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Blurred edges look faint, and faint edges look sharp: The effect of
a gradient threshold in a multi-scale edge coding model
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Abstract

A multi-scale model of edge coding based on normalized Gaussian derivative filters successfully predicts perceived scale (blur) for a
wide variety of edge profiles [Georgeson, M. A., May, K. A., Freeman, T. C. A., & Hesse, G. S. (in press). From filters to features: Scale-
space analysis of edge and blur coding in human vision. Journal of Vision]. Our model spatially differentiates the luminance profile, half-
wave rectifies the 1st derivative, and then differentiates twice more, to give the 3rd derivative of all regions with a positive gradient. This
process is implemented by a set of Gaussian derivative filters with a range of scales. Peaks in the inverted normalized 3rd derivative across
space and scale indicate the positions and scales of the edges. The edge contrast can be estimated from the height of the peak. The model
provides a veridical estimate of the scale and contrast of edges that have a Gaussian integral profile. Therefore, since scale and contrast
are independent stimulus parameters, the model predicts that the perceived value of either of these parameters should be unaffected by
changes in the other. This prediction was found to be incorrect: reducing the contrast of an edge made it look sharper, and increasing its
scale led to a decrease in the perceived contrast. Our model can account for these effects when the simple half-wave rectifier after the 1st
derivative is replaced by a smoothed threshold function described by two parameters. For each subject, one pair of parameters provided
a satisfactory fit to the data from all the experiments presented here and in the accompanying paper [May, K. A. & Georgeson, M. A.
(2007). Added luminance ramp alters perceived edge blur and contrast: A critical test for derivative-based models of edge coding. Vision

Research, 47, 1721–1731]. Thus, when we allow for the visual system’s insensitivity to very shallow luminance gradients, our multi-scale
model can be extended to edge coding over a wide range of contrasts and blurs.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Since the field of image processing first appeared, it has
been considered that a useful function of early visual pro-
cessing is to encode the image in terms of primitive features
such as edges (Kirsch, Cahn, Ray, & Urban, 1957; Kov-
asznay & Joseph, 1953, 1955; Roberts, 1965). Edge maps
are highly compact representations that make explicit
many behaviourally relevant transitions in surface proper-
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ties (Marr & Hildreth, 1980). If an edge map contains
information about edge contrast, scale (i.e. blur), and mean
luminance at the edge location, then a close approximation
to the original image can be reconstructed, demonstrating
that an edge map that includes these properties preserves
most of the information in the image (Elder, 1999).

As well as helping to preserve the information content of
the processed image, the representation of edge contrast
and scale makes some of this information explicit in ways
that may be useful in a number of higher-level computa-
tions. Edge contrast can indicate the magnitude of transi-
tions in surface properties or illumination. Edge scale is
also very informative, allowing the visual system make
inferences about shadows, surface curvature, and optical
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blur/defocus (Elder & Zucker, 1998; Marshall, Burbeck,
Ariely, Rolland, & Martin, 1996; Mather, 1996, 1997;
Mather & Smith, 2002). This paper is concerned with
how edge contrast and scale are encoded in human vision.

Many models of edge processing in biological vision
have been based on derivative operations. Edges are
defined as changes in image intensity, and are usually
located by finding peaks in the 1st derivative or zero-cross-
ings (ZCs) in the 2nd derivative, using derivative operators
with a range of scales (i.e. sizes). The main alternative to
derivative-based models is the energy model; this model
defines features as peaks of phase congruency, and detects
them by detecting peaks in the energy function, found by
adding the squared outputs of odd and even filters (Mor-
rone & Burr, 1988; Morrone & Owens, 1987). The original
energy model did not estimate the edge contrast or blur;
Morrone, Burr, and Ross (1994) extended it to predict per-
ceived edge contrast, but this new model did not estimate
edge blur. Indeed, phase congruency itself provides ‘‘no
information about blur’’ (Wang & Simoncelli, 2004). Wang
and Simoncelli showed that phase information could, in
principle, be used to measure blur, but their algorithm
was designed to estimate the blur of whole images, and
did not provide a means of estimating the blur of individual
edges. We know of only one attempt to use an energy-
based algorithm to estimate the blur of individual edges,
and this was a machine vision algorithm that was not a
plausible model of human vision (Kisworo, Venkatesh, &
West, 1994).

Marr was the first to seriously consider how edges might
be detected in biological visual systems (Marr, 1976; Marr
& Hildreth, 1980), but his algorithms for estimating edge
blur and contrast were not supported by any computa-
tional justification or empirical data.

Watt and Morgan (1983) argued that perceived edge
blur was determined from the spatial separation between
peak and trough in the 2nd derivative of the retinal image.
Their main evidence for this was that blur discrimination
thresholds for three different types of edge profile were clo-
sely matched when blur was defined in this way. Watt and
Morgan’s (1983) model of blur coding was adapted slightly
and incorporated into MIRAGE, a model of feature cod-
ing in human vision (Watt & Morgan, 1985).

Georgeson (1994) proposed that perceived blur is a
function of the ratio of 1st to 3rd derivative at the edge
location. This model accurately predicted the results of
an experiment in which subjects were asked to match the
perceived blurs of Gaussian edges2 and sine wave edges;
Watt and Morgan’s (1983) model overestimated the per-
ceived blur of sine wave edges compared with Gaussian
edges.

The derivative operators in MIRAGE were normalized
so that they all had the same amplitude in the space
2 We define a Gaussian edge with scale r as the integral of a Gaussian
function with standard deviation r.
domain, which would tend to boost the large-scale (low
spatial frequency) channels. Several approaches to edge
detection in machine vision have involved other types of
normalization, which vary the amplitude of the operator
as a function of scale. These approaches use the concept
of a scale-space representation (Witkin, 1983), which has
a dimension representing the operator scale, r, in addition
to the two spatial dimensions of the filtered image.

The changing response across scale can be used to mea-
sure edge blur, either by fitting a template to the response
profile across scale (Dijk, van Ginkel, van Asselt, van Vliet,
& Verbeek, 2003; Zhang & Bergholm, 1997) or by finding
the scale of the operator with the strongest response (Korn,
1988; Lindeberg, 1998a; van Warmerdam & Algazi, 1989).
The latter approach was pioneered by Korn (1988), using
Gaussian 1st derivative operators, but his normalization
factor (r

ffiffiffiffiffiffi
2p
p

, where r is the operator scale) would only
give rise to a peak across scale when the edge of interest
was flanked by other nearby edges: the response profile
across scale due to an isolated Gaussian edge increased
monotonically with increasing operator scale (van Warm-
erdam & Algazi, 1989; Zhang & Bergholm, 1997). van
Warmerdam and Algazi (1989) noted that a peak does

occur if the normalization factor is ‘‘any power of r
between [but not including] zero and one.’’ (p. 977). If the
normalization factor is r1/2, then, for a Gaussian edge stim-
ulus, the edge scale matches the scale of the most strongly
responding operator (Lindeberg, 1998a).

Lindeberg (1998a) referred to the normalized 1st deriva-
tive as the edge strength. He presented an algorithm that
marked edges at points in scale-space that were peaks in
the edge strength across both space and scale. The position
of the peak along the scale dimension gave the edge scale.
This algorithm provides a good solution to the problem of
how to deal with information from multiple scales. Small
operators resolve fine details well, but produce a mass of
broken line segments on blurred edges, such as shadows;
large operators process blurred edges well, but distort the
edge locations, and fail to capture fine details. Lindeberg
proposed that each edge should be detected by an operator
with the same scale as the edge.

1.1. A new model of edge detection and blur perception in

human vision

Georgeson, May, Freeman, and Hesse (in press) pro-
posed a model of edge processing in human vision along
quite similar lines to the algorithms described by van
Warmerdam and Algazi (1989) and Lindeberg (1998a).
They presented the results of several psychophysical exper-
iments in which subjects had to match the blur of a Gauss-
ian edge to a non-Gaussian edge. The non-Gaussian
stimuli included mixtures of two superimposed Gaussian
edges of different scale, Gaussian edges sharpened with a
non-linear transducer, Gaussian derivatives of different
order, blurred square waves with different numbers of har-
monics, half-period sine edges, a full period of a sine wave
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grating, and multiple periods of a sine wave grating.
Georgeson et al. examined the predictions of a family of
Gaussian scale-space models, including Lindeberg’s
(1998a) 1st-derivative-based algorithm described above,
and found that one model alone gave a strikingly good
fit to the data. This model, which they named Nþ3 , is
described in detail in the next section. The subscript, 3,
refers to the fact that the model looked for peaks in the
3rd derivative scale-space representation. The superscript,
+, refers to the fact that the 1st derivative stage was fol-
lowed by a half-wave rectifier, which only allowed positive
values to pass through to the next stage.

Although edge blur measures based on the 3rd deriva-
tive have been proposed before (Lindeberg, 1998a; van
Warmerdam & Algazi, 1989), no previous algorithm had
detected edges by finding peaks in the 3rd derivative.
Georgeson et al. argued in favour of this 3rd-derivative-
based model because it provided a very good fit to their
data, with no free parameters: models based on the 1st or
2nd derivative did not fit the data so well. The rectifier after
the 1st derivative was needed because the 3rd derivative
normally contains far more peaks than perceived edges:
these unwanted peaks are removed by the rectifier. The rec-
tifier also improved the model’s fit to the blur-matching
data in cases where the stimuli were periodic, as in a
grating.

Most of the data that Georgeson et al. presented in
favour of the Nþ3 model were from blur-matching experi-
ments, but the 3rd-derivative approach is also supported
by a new phenomenon: Mach Edges. Georgeson (2006)
reported that in triangle-wave gratings, blurred to different
extents, edges are seen at peaks in the 3rd derivative, with-
out corresponding peaks in the 1st derivative, or ZCs in the
2nd derivative.

The Nþ3 model returns a veridical estimate of the scale
(i.e. blur) of a Gaussian edge. Also, as shown in the next
section, it can be extended to give a veridical contrast esti-
mate. Therefore, since scale and contrast are independent
parameters of the stimulus, the model predicts that the per-
ception of scale should be independent of contrast and
vice-versa. This prediction is at odds with Georgeson’s
(1994) finding that edges looked sharper when their con-
trast was reduced. This was a potentially serious problem
for the Nþ3 model. Since there had been no other reports
of the effect of contrast on perceived scale, we first set
out to confirm and extend those earlier findings. We
describe the effects of contrast on perceived edge scale
(Experiment 1), the effects of edge scale on perceived con-
trast (Experiment 2), and we show how these effects can
be explained by Nþ3 if the half-wave rectifier that follows
the first derivative operation is replaced with a threshold-
like function. Before describing the experiments, we
describe the Nþ3 model in more detail, and explain how it
can be extended to make estimates of edge contrast. We
also give an alternative description of the model in terms
of template matching because, although this description
is formally identical to the description based on derivative
operations, it gives a better insight into the behaviour of
our model in the simulations of our experiments.
2. Details of the Nþ3 model

The Nþ3 model is illustrated in Fig. 1. The full version of
the model uses filters that are directional derivatives of 2D
circular Gaussians (the 2D shape of the filters was deter-
mined from an experiment on the effect of edge length on
blur perception, reported by Georgeson et al., in press).
However, for simplicity we describe a 1D version of the
model below. For an infinitely long straight edge, the 2D
model reduces exactly to the 1D model applied to the
edge’s cross-sectional profile. The experiments in this paper
used 1D edges within windows that were large enough to
ensure that the differences in the predictions of the 1D
and 2D versions of the model were negligible.

The model consists of a set of channels, selective for
edge scale. Within each channel, the processing occurs as
follows. The image is filtered with a Gaussian 1st derivative
operator with scale r1. Then the output is half-wave recti-
fied and filtered with a Gaussian 2nd derivative operator
with scale r2. Within a channel that has the same polarity
as an isolated edge, the half-wave rectifier has no effect, so
the two derivative operations combine to form a Gaussian
3rd derivative operation with scale r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1 þ r2
2

p
, which

we call the channel scale. The channel scale varies across
channels. In our current implementation, r1 = r/4. The
polarity of the Gaussian 2nd derivative operator is
inverted, which inverts the 3rd derivative output, so posi-
tive-gradient edges give rise to peaks rather than troughs
in the 3rd derivative. The output of each blur channel is
normalized, by multiplying by r3/2, to give the edge
strength, S, which is a function of space and scale. With
this normalization factor, the peak in response to a Gauss-
ian edge occurs in a channel with scale equal to the edge
scale.

For a vertical Gaussian edge, with scale re, Michelson
contrast C, and horizontal position x0, the edge strength
at a point (x;r) in scale-space is given by

Sðx; rÞ ¼ C

ffiffiffi
2

p

r
r

r2
e þ r2
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r2
e þ r2

 !
exp
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e þ r2Þ

 !
:

This is derived assuming that the image that forms the in-
put to the model is the function, f, in Eq. (1):

LðxÞ ¼ L0ð1þ f ðxÞÞ; ð1Þ

where L is the stimulus luminance and L0 is the back-
ground luminance. For a Gaussian edge,
f(x) = C(2U(x;r) � 1), where U(Æ;r) is the integral of a
unit-area Gaussian with scale (standard deviation) r.

It can be shown that the edge strength, S, peaks at
(x0;re), correctly indicating the position and scale of the
edge. The height of the peak, Speak, is given by



Response to an edge with the same polarity as the channel

filter
(scale σ1) rectifier

filter
(scale σ2)

Response to an edge with the opposite polarity

filter
(scale σ1) rectifier

filter
(scale σ2)

Template–based description of the model

d
dx

rectifier d
dx

filter
(scale σ)

Scale–space representation showing the output of all scale/blur channels

Spatial position

S
ca

le
 (

σ)

Fig. 1. The top three rows show examples of processing within one channel of the Nþ3 model. In the top row, the edge has the same polarity as the channel
For this stimulus, the half-wave rectifier has no effect, and the output gives a peak across space at the edge location. The outputs from all the channels form
a scale-space representation (bottom), which has a peak across scale in the channel with scale equal to the edge scale. In the second row, the edge has the
opposite polarity; its gradient in this channel is negative, so the signal is removed by the half-wave rectifier. This edge would be processed by a channel with
opposite polarity, in which it would have a positive gradient. The third row shows the processing of a formally equivalent model, based on template
matching. There are two pure 1st derivative operations, followed by filtering with a Gaussian 1st derivative with scale equal to the channel scale
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1 þ r2
2

p
. The Gaussian 1st derivative kernel acts as a template that is matched against the 2nd derivative of the edge: the normalized output at each

position and scale in the scale-space representation represents the correlation between the 2nd derivative of the stimulus and a template with that position
and scale. Peaks in correlation give the position and scale of the locally best-fitting template, so these peaks can be used both to detect the edge, and
estimate its position and scale.
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Speak ¼
r�3=2

e C
2
ffiffiffi
p
p :

Rearranging this equation gives a formula for estimating
edge contrast (Ĉ) from peak height and estimated edge
scale ðr̂eÞ:

Ĉ ¼ 2
ffiffiffi
p
p

r̂3=2
e Speak: ð2Þ

It might appear from Eq. (2) that the estimated contrast
would depend on the spatial units used to measure re. This
is not the case, because the Gaussian derivative operators
in the model are derivatives of a Gaussian that has unit
area in whichever spatial units are being used. If the spatial
units were changed, then the amplitude of each operator
.

,

would have to be scaled to maintain the unit area of the
Gaussian from which it was derived. This would lead to
a change in the value of Speak which compensates exactly
for the change in r̂e.

2.1. Template matching

Lindeberg’s (1998a) algorithm estimated the location
and blur of each edge from the position of its peak in the
Gaussian 1st derivative scale-space representation. He con-
trasted this algorithm with the template-matching
approach of Zhang and Bergholm (1997), claming that
‘‘there is hence no need . . . to fit a model to the data to esti-
mate the degree of diffuseness.’’ (p. 144). But in fact, as
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noted by Lindeberg himself, we can view his algorithm as a
‘‘pattern matcher’’ (Lindeberg, 1998b, p. 83): the algorithm
is formally equivalent to treating the 1st derivative of the
edge as a spatial ‘‘signature’’, and then finding the best-fit-
ting template. To see why this is the case, note that the
Gaussian derivative operation is equivalent to a pure deriv-
ative operation, followed by filtering with a Gaussian ker-
nel. The first operation finds the 1st derivative of the edge
(the ‘‘signature’’), and the second performs a correlation
between the signature and the Gaussian kernel (the ‘‘tem-
plate’’), which is itself the 1st derivative of a Gaussian edge.
It is necessary to normalize the correlation coefficients,
allowing them to be compared across scale, so that the
peak across scale correctly indicates the scale of the best-fit-
ting template. Appendix A shows that the normalization
factor required to normalize this correlation coefficient is
r1/2, as used by Lindeberg (1998a). With this normalization
factor, the peak of correlation will occur in the operator
with a scale matched to the edge scale.

The Nþ3 model is also formally equivalent to the match-
ing of a signature and template (see Fig. 1), a fact that will
provide a crucial intuitive insight into the behaviour of the
model in our simulations. In this case, the signature and
template are the 2nd derivatives of edges. To understand
this, note that the Gaussian 3rd derivative operation per-
formed by Nþ3 is equivalent to a pure 2nd derivative oper-
ation followed by filtering with a Gaussian 1st derivative
kernel. The first operation finds the 2nd derivative of the
edge (the ‘‘signature’’), and the second performs a correla-
tion between the signature and the Gaussian 1st derivative
kernel (the ‘‘template’’), which is itself the 2nd derivative of
a Gaussian edge. As with Lindeberg’s algorithm, the corre-
lation coefficient must be normalized, and Appendix B
shows that the correct normalization factor in this case is
r3/2, as used by Georgeson et al. (in press).

3. General psychophysical methods

3.1. Subjects

Three subjects participated in the experiments: the
authors (KAM and MAG), and an experienced psycho-
physical observer who was unaware of the purposes of
the experiments (PAA). All had corrected-to-normal
vision.

3.2. Apparatus

The experiments were run on a Pentium III PC with a
VSG 2/3 graphics card (Cambridge Research Systems).
MATLAB (Mathworks) was used to generate images and
control the experiments. The images were linearly scaled
to fit the range 0–255 and stored in an 8-bit frame store
on the VSG card. Stimuli were then scaled to the correct
contrast, and gamma corrected, by mapping the 8-bit val-
ues onto 15-bit values. An analogue input to the monitor
was generated from these 15-bit values by adding the
outputs of two 8-bit digital-to-analogue converters in the
VSG. Stimuli were displayed on an Eizo FlexScan 6600-M
greyscale monitor at a frame rate of 110 Hz, with mean
luminance 45 cd/m2.

3.3. Stimuli

The stimuli in all the experiments were vertical edges
that had the profile of the integral of a Gaussian with scale
(i.e. standard deviation), r. Examples are shown in Fig. 2.
The luminance, L, at spatial position (x,y) is given by

Lðx; yÞ ¼ L0 1þ Cwðx; yÞð2Uðx; rÞ � 1Þ½ �; ð3Þ
where L0 is the mean luminance (45 cd/m2). C is the
Michelson contrast: a positive value gives edges that are
dark on the left, and a negative value gives edges that are
dark on the right. w is the spatial envelope, which differed
across the two experiments. All stimuli were invariant over
time in every aspect except their contrast. The contrast had
a temporal profile that was flat for the central 250 ms, and
flanked by raised sine edges of half-period 25 ms, so the en-
tire stimulus lasted for 300 ms. The value, C, in Eq. (3) re-
fers to the contrast during the flat central period of the
stimulus.

3.4. Methods

The purpose of each experiment was to find the per-
ceived blur or contrast of a set of edges, referred to as fixed
edges. The perception of each fixed edge was assessed by
using a 1-up-1-down staircase (e.g., Levitt, 1971; Wetherill
& Levitt, 1965) to bring the scale (or contrast) of an adjust-

able edge close to the point of subjective equality, and then
fitting a psychometric function to the data to give a maxi-
mum-likelihood estimate of the adjustable edge scale (or
contrast) that gave a perceptual match to the fixed edge.

On each trial there were two intervals separated in time
by 500 ms: one randomly selected interval contained a fixed
edge, and the other contained the corresponding adjustable
edge, with the same polarity. Subjects clicked a mouse but-
ton to indicate which edge appeared higher in either blur or
contrast.

Each staircase began at a random starting point between
10 and 14 dB above or below the fixed edge scale/contrast
(an increase of 1 dB is multiplication by a factor of 101/20).
The step size started off at 8 dB, and halved with each
reversal of direction, until it had reached 1 dB. The stair-
cases terminated immediately after the 12th reversal of
direction, and usually lasted for about 25 trials. Several
staircases, corresponding to different conditions (i.e. differ-
ent fixed edges), were interleaved within a session. On each
trial, the probability that a particular staircase was selected
was equal to the number of reversals remaining on that
staircase divided by the total number of reversals remain-
ing across all the staircases. For each condition of each
experiment, there were eight staircases, distributed over
two or more sessions, giving about 200 trials per condition.



Fig. 2. Examples of stimuli used in Experiments 1 and 2. Each stimulus is a 16 0 Gaussian edge. (a) A stimulus from the main part of Experiment 1. (b) A
stimulus from the version of Experiment 1 with a noise surround. (c) A stimulus from Experiment 2.
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All the data for each condition were pooled, to give a
histogram of the proportion of times the adjustable edge
was judged to be higher in scale or contrast than the fixed
edge, for each adjustable edge scale/contrast level. A cumu-
lative Gaussian psychometric function was fitted to the
data using psychofit, version 2.5.1 (now renamed psignifit;
see http://www.bootstrap-software.org/psignifit/), a soft-
ware package which implements the maximum-likelihood
method described by Wichmann and Hill (2001a). Log
units were used for the domain of the psychometric func-
tion. The ‘‘lapse rate’’ parameters, c and k, which deter-
mine how far the minimum and maximum values deviate
from 0 to 1, respectively, were allowed to vary between 0
and 0.05. After fitting the psychometric function, the 50%
point of the function was found, which corresponded to
the PSE. Confidence limits (5% and 95%) for the PSE were
then found using the percentile bootstrap method imple-
mented by psychofit (see Wichmann & Hill, 2001b); each
confidence limit was based on 10,000 Monte-Carlo simula-
tions. All error bars shown on the graphs in this paper indi-
cate bootstrap confidence limits generated with this
method.
Table 1
Window diameter, viewing distance, and horizontal and vertical screen
resolution for each fixed edge scale in Experiment 1

Fixed edge
scale
(arcmin)

Fixed and adjustable
window diameter
(arcmin)

Viewing
distance
(cm)

Screen resolution
(arcmin per pixel)

6 80 260 0.586
8 80 260 0.586

12 160 130 1.17
16 160 130 1.17
24 320 65 2.34
32 320 65 2.34

The 6 0, 120 and 240 fixed stimuli were physically identical on the screen,
and differed in scale only because of the different viewing distances; the
same applied to the 80, 160 and 32 0 fixed stimuli.
4. Experiment 1: The effect of contrast on perceived blur

4.1. Method and stimuli

Experiment 1 had two independent variables: the con-
trast and scale of the fixed edge. Michelson contrast levels
were 0.05, 0.1, 0.2, and 0.4; scale levels were 6, 8, 12, 16, 24,
and 32 arcmin. The six levels of fixed edge scale were
spread over three viewing distances, which are given in
Table 1, along with the screen resolutions. Two sessions
were conducted at each viewing distance. The sessions were
run in the order ABCBCA, where a different viewing dis-
tance was assigned (randomly for each subject) to each of
the letters A, B, and C. This ordering was intended to bal-
ance out any practice effects, and avoided two consecutive
sessions at the same viewing distance. Within a session,
subjects saw fixed edges with two different scales, at all four
contrast levels. Each of these eight conditions was assigned
to four staircases, which each controlled the scale of a dif-
ferent adjustable edge that had a contrast of 0.4. For one
pair of these staircases, the stimuli had positive polarity
(dark on the left); for the other pair, the stimuli had nega-
tive polarity. Within a pair, one staircase started above the
fixed edge scale and the other started below. Data for each
condition were collapsed across polarity, staircase start
position, and session number, and analyzed as described
earlier.

Edge stimuli were constructed according to Eq. (3). The
windows (w) were circular with a flat profile and a sharp
border. The window border was antialiased by giving it a
raised sine profile with half-period equal to the diagonal
distance across a pixel. Window diameters are given in
Table 1. An example stimulus is shown in Fig. 2a.

KAM performed an additional version of this experi-
ment, in which the stimuli were surrounded by binary noise
with contrast 0.2, which filled a 256-by-256 pixel square
(width and height 10 deg at viewing distance 65 cm, 5 deg
at viewing distance 130 cm, or 2.5 deg at 260 cm viewing
distance). The noise was generated by dividing the
256 · 256 pixel square into 2 · 2 pixel squares and assign-
ing each 2 · 2 square a randomly selected luminance of
L0 · (1 ± 0.2). An example is shown in Fig. 2b. The idea
here was to keep the overall contrast of the stimulus

http://www.bootstrap-software.org/psignifit/
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moderately high, even when the edge contrast was very
low, thereby limiting the possible action of contrast gain
control mechanisms, which are not taken into account by
our model.

4.2. Results

The results are shown in Fig. 3. The vertical axis of each
panel represents the ratio of the adjustable edge scale to
fixed edge scale when the edges perceptually matched in
blur. Not surprisingly, when the adjustable and fixed edge
contrasts were equal (0.4), the two edges appeared to match
in blur when they were physically identical, giving a scale
ratio of 1. When the contrast of the fixed edge was reduced,
the scale of the perceptually matched adjustable edge
decreased, as reported by Georgeson (1994), showing that
edges look sharper when their contrast is reduced. As with
Georgeson’s (1994) data, this effect was stronger for larger-
scale edges. The addition of a noise surround made little
difference to the results.
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Fig. 3. Results of Experiment 1. Circles indicate psychophysical data; error bar
the ratio of adjustable edge scale to fixed edge scale when the two edges percept
column of panels gives the data for one fixed edge scale. The horizontal dashe
independent of contrast, as predicted by the original version of the Nþ3 model
Nþ3 1B, in which the half-wave rectifier in Nþ3 0 is replaced with Transducer A or
The numerical values plotted in this figure are given in the supplementary data
figure legend, the reader is referred to the web version of this article.)
4.3. Discussion—modelling a gradient threshold

Georgeson et al.’s (in press) Nþ3 model is linear with con-
trast level, so the positions of the peaks in the scale-space
output (which determine the estimated blur) are unaffected
by a change in contrast. The contrast-dependence of blur
perception observed here suggests that we should incorpo-
rate some non-linearity in the response to contrast. One
possibility was to replace the half-wave rectifier after the
1st derivative with a biased rectifier, or threshold-linear

function, with the form R(x) = bI(x) � Tc, where R is the
output, I is the input (i.e. the output of the 1st derivative
operator), T is the threshold, and bac = max(a, 0). This
approach was used in Kovasznay and Joseph’s (1955) edge
detector to remove noise. Fig. 4 illustrates how the thresh-
old could make low-contrast edges appear sharper. As
noted above, the Nþ3 model can be viewed as matching a
template to the 2nd derivative of the edge. The threshold
truncates the 1st-derivative signal, so that only the central
(above-threshold) region survives. This causes the 2nd
 contrast
05 0.1 0.2 0.4 0.05 0.1 0.2 0.4 0.05 0.1 0.2 0.4

PAA

MAG

Fixed σ = 16’ Fixed σ = 24’ Fixed σ = 32’

KAM

s indicate bootstrap confidence limits of 5 and 95%. The vertical axis gives
ually matched in blur. Each row of panels gives data for one subject. Each
d lines indicate the results that would have occurred if perceived blur was
ðNþ3 0Þ. The blue and green lines show the results predicted by Nþ3 1A and
B. The parameters of the transducers for each subject are given in Table 2.
file, ‘‘Fig3_data.txt’’. (For interpretation of the references to color in this
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derivative to be truncated, too, so that it fits best to a nar-
rower template. With low-contrast edges, more of the 1st
derivative falls below threshold, so the truncation is more
severe, and the 2nd derivative matches a narrower template
than the 2nd derivative from a higher-contrast edge. Thus,
the low-contrast edge is perceived to be sharper than the
high-contrast edge.

When we modelled the effect of the threshold, we found
that the magnitude of the sharpening effect varied greatly
with the scale of the edge—much more so than was found
in the psychophysical data. We had much more success
with smooth transducers which had the approximate shape
of threshold functions, but which always gave above-zero
outputs for above-zero inputs. These are described in the
next section.

5. Two transducer models

There are two basic types of threshold function: a soft

threshold and a hard threshold3. The soft threshold function
is the standard threshold-linear function: R = bI � Tc,
whereas the output of the hard threshold function is equal
to the input for inputs greater than or equal to the thresh-
old, and zero otherwise. We investigated two transducers: a
smoothed soft threshold function (Transducer A), and a
smoothed hard threshold function (Transducer B).
3 Our usage of the terms ‘‘soft threshold’’ and ‘‘hard threshold’’ is
standard in the field of wavelet theory (see, for example, Donoho &
Johnstone, 1994), and has been used within the field of psychophysics
(e.g., Langley, 2002; McIlhagga, 2004), but some authors use these terms
differently, referring to a ‘‘soft threshold’’ as a smooth function.
For inputs between 0 and T, Transducer A is a power
function, scaled so that its gradient is 1 at T. For inputs
greater than or equal to T, the function continues as a
straight line with gradient 1. Transducer A is formally
defined as follows:

R ¼
Ip

pT p�1 ; 0 6 I < T ;

I � T ðp�1Þ
p ; I P T :

(

Transducer B is described by the following function, for in-
puts P0:

R ¼ Ip

Ip�1 þ T p�1
:

Both transducers give zero outputs for negative inputs.
They are illustrated in Fig. 5, for a range of exponents.
In both cases, setting T to zero yields a standard half-wave
rectifier, so the original Nþ3 model is a specific parameteri-
sation of either of these models. As p!1, the transducers
tend towards pure soft (Transducer A) or hard (Transducer
B) threshold functions, with threshold, T. Henceforth, we
will refer to Georgeson et al.’s (in press) original Nþ3 model
(containing a half-wave rectifier) as Nþ3 0; the modified ver-
sions of Nþ3 0, using Transducers A or B, will be referred to
as Nþ3 1A and Nþ3 1B, respectively.
6. Simulation of Experiment 1 with Nþ3 1A and Nþ3 1B

6.1. Simulating Experiment 1

The model was implemented using MATLAB. Each
channel differed in scale from the next by a factor of
1.02, or 2%. The spatial resolution of the input image
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was set so that the smallest operator in the smallest channel
had a scale of 1 pixel. Within a channel, the processing pro-
ceeded as for Nþ3 0, described in Section 2, except that the
half-wave rectifier was replaced with Transducer A or B.
For each condition, the estimated scale of the fixed edge
was found from the position of its peak along the scale
dimension. Then a binary search method was used to
adjust the scale of the adjustable edge until it matched
the fixed edge in estimated scale (i.e. until the peak
occurred in the same scale channel for both edges).

To allow the simulations to be completed within an
acceptable time period, a 1D version of the model was
used. Given that the edges had a 1D profile, the results
should be the same as for the 2D version. This was con-
firmed empirically, by running 1D and 2D versions of
Nþ3 1A and Nþ3 1B on all the fixed edge stimuli. It has been
suggested to us that, because 1D and 2D filters differ in
their response to noise, we cannot simply generalize to
2D from 1D simulations. While this is true in general, it
does not apply here because our simulations were noise-
free, and in these circumstances the 1D model makes the
same predictions as the 2D version.

6.2. Fitting the parameters

A similar simulation was conducted for Experiment 2
(described in more detail later). All three subjects also par-
ticipated in further experiments reported in the accompany-
ing paper (May & Georgeson, 2007), and each transducer
was fitted to the data from the two papers (five experiments
for KAM and MAG, and three for PAA), to give one pair
of parameters for each transducer, for each subject.

The best-fitting pair of parameters was defined as the
pair that minimized the root mean square (RMS) difference
between the predicted and actual scale/contrast of the blur-
or contrast-matched adjustable edge across all conditions
of all experiments (120 conditions for KAM and MAG;
48 for PAA). For KAM in Experiment 1, the data were
averaged across the noise and no-noise conditions, since
the noise surround did not substantially affect the results.
To make the units of error comparable across different
experiments and conditions, all blur and contrast values
were first converted to decibels using the formula,
xdB = 20 log10x, where x is the edge scale or Michelson
contrast, and xdB is the value converted to decibels. A given
difference in decibels corresponds to a constant multiplica-
tive factor, whether the units are edge scale or contrast.

The best-fitting parameters were found for each subject
by first sampling the parameter space at regular intervals,
and then using the best-fitting pair of parameters as the
starting point of a simplex minimization procedure (Nelder
& Mead, 1965).

6.3. Results and discussion

For each subject and transducer type, Table 2 gives the
single pair of parameters that fitted best across all experi-
ments from this paper and the accompanying paper (May
& Georgeson, 2007). For the T parameter to be interpret-
able, it should be noted that, in our simulation, the spatial
position was measured in deg visual angle. If the spatial
position was to be measured in arcmin, then the gradient
signal, and hence the T values, would be divided by 60.
The exponent parameter, p, is independent of the spatial
units. Table 2 also gives the RMS error of the fit of the
same best-fitting model to Experiments 1 and 2 of this
paper, and to the whole set of experiments from both
papers. The overall RMS error of the fit to Experiment 1
varied between 0.95 and 2.18 dB for Nþ3 1A, and between
0.73 and 2.07 dB for Nþ3 1B, indicating an acceptable fit.
The RMS error of the fit to all the experiments was less
than 2 dB for each subject and each transducer type. The
difference in goodness-of-fit between the two transducers
was small.

The predicted results of Experiment 1, using the best-fit-
ting parameters, are plotted in Fig. 3, along with each sub-
ject’s data. The model fits most of the data points well,
although there are a few isolated conditions for which the
data deviate quite substantially from the predictions. These
discrepancies occurred mainly for the lowest-contrast
edges, for which the blur judgements would have been least
reliable, so we attribute these discrepancies to experimental
error (the subjects reported that the blur judgements felt
much more difficult for the lowest-contrast edges). The size
of the experimental error is underestimated by the boot-
strap error bars, because bootstrapping does not take into
account any non-stationarity in the subject across time
(Wichmann & Hill, 2001b, p. 1316).

In general, incorporating a threshold-like transducer (A
or B) into the Nþ3 model accurately accounts for the per-
ceived sharpening of low-contrast edges, as well as the
slight increase in the size of this effect with increasing edge
scale. The increase in the effect size with increasing edge
scale occurs because enlarging the edge scale reduces the
gradient magnitude, so that the gradient signal is more
severely truncated by the threshold-like behaviour of the
transducers.



Table 2
Best-fitting parameters and RMS errors (in dB) for each subject

Subject Transducer A Transducer B

T p RMS error (dB) T p RMS error (dB)

Ex 1 Ex 2 All Ex1 Ex2 All

KAM 0.210 2.83 2.18 2.21 1.98 0.317 3.16 2.07 2.05 1.95
MAG 0.120 5.33 1.32 2.10 1.85 0.329 3.02 1.50 1.51 1.82
PAA 0.410 1.75 0.95 2.41 1.59 0.434 2.15 0.73 2.43 1.53

For each subject and transducer, the parameters were fitted to the complete set of data from all the experiments in this paper and the accompanying paper
(May & Georgeson, 2007), to give a single pair of parameters across all experiments for each subject and transducer type. K.A.M. and M.A.G.
participated in five experiments in total; PAA participated in three. The ‘‘All’’ RMS error column gives the RMS error across all experiments to which the
model was fitted; the ‘‘Ex 1’’ and ‘‘Ex 2’’ columns give the RMS error for Experiments 1 and 2 of this paper, respectively.
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Georgeson (1994) had previously reported the results of
a similar experiment to Experiment 1, using different edge
scales and contrasts. Georgeson’s (1994) data were the
means of two subjects, MAG and TCAF. Fig. 6 shows
the data from MAG alone. We simulated this experiment
in the same way as Experiment 1, using MAG’s parame-
ters, given in Table 2. Despite the fact that the model
had not been fitted to these data, it predicted the results
fairly accurately, with RMS error values of 1.37 dB for
Nþ3 1A, and 1.53 dB for Nþ3 1B. The only previous attempt
to model the effect of contrast on perceived blur was by
Purushothaman, Lacassagne, Bedell, and Ogmen (2002),
using a neural network model of retino-cortical dynamics.
In contrast to our data, their model predicted that per-
ceived blur would be an inverted U-shaped function of con-
trast, and that the size of the effect of contrast on perceived
blur would decrease with increasing edge scale, the opposite
of our empirical findings.
7. Experiment 2: The effect of edge scale on perceived

contrast

7.1. Introduction

The threshold-like transducers, introduced to explain
the results of Experiment 1, cause the Nþ3 model to predict
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that perceived contrast should decrease with increasing
edge scale. This can be understood as follows. Eq. (2)
shows that the more the scale is underestimated, the more
the contrast is underestimated. Increasing the edge scale
reduces its gradient, so the threshold has a greater effect,
the scale is underestimated by a greater amount, and there-
fore the contrast is also underestimated by a greater
amount. In addition, the size of this effect should be smaller
for high-contrast edges, since these will be largely unaf-
fected by any threshold-like effect on the gradient. Experi-
ment 2 was designed to test these predictions.
7.2. Psychophysical methods and stimuli

In Experiment 2, fixed edge contrasts were 0.05, 0.1, 0.2,
and 0.4, and scales were 2, 4, 8, and 16 arcmin. Each of the
16 conditions was assigned to a different staircase, which
controlled the contrast of an adjustable edge that had a
scale of 2 arcmin. All 16 conditions were tested within
one session, and each subject completed eight similar
sessions. The starting contrast for each staircase was
10–14 dB above or below the fixed edge contrast, and the
sign of this offset was balanced within and between sessions.

Edge stimuli were constructed according to Eq. (3). For
all stimuli, the window function, w, was a sharp-edged
square with width and height 320 arcmin (Fig. 2c). Viewing
0.08 0.16 0.32

ge contrast
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0.02 0.04 0.08 0.16 0.32

Fixed σ = 11.3’
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f contrast on perceived blur. The blue and green lines show the predictions
fitted best to MAG’s data from Experiments 1 and 2 of this paper and

. The model was not fitted to the data shown in this figure. The numerical
.txt’’. (For interpretation of the references to color in this figure legend, the
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distance was 152.3 cm, which gave a screen resolution of 1 0

per pixel. For each fixed edge, we measured the contrast of
an adjustable edge (with scale 2 0) that matched the fixed
edge in perceived contrast, using the method described in
Section 3.4. Subjects were asked to judge the perceived con-
trast of the central edge in each image, and to ignore the
rest of the stimulus. Unlike in Experiment 1, each stimulus
was accompanied by a 440 Hz tone so that, even at very
low contrast, the subject would always know when it was
being presented.

7.3. Simulation method

Experiment 2 was simulated in a very similar way to
Experiment 1, except that the binary search method
adjusted the contrast, rather than the scale, of the adjust-
able edge. The binary search continued until the difference
between the adjustable edge contrast and the true matching
value was within 1% of the true value. The details of this
method are given in Appendix C.

7.4. Results and discussion

Fig. 7 shows the results of the experiment, along with
the predicted results using the best-fitting parameters from
Table 2. As predicted, the perceived contrast decreased
with increasing edge scale, and this effect was smaller for
higher-contrast edges. For all subjects, Nþ3 1A and Nþ3 1B
provided a satisfactory fit to the data, except for one very
wayward point in PAA’s data (fixed edge contrast 0.2
and scale 16 0). This data point violates the pattern shown
by the other subjects, and shown by PAA for the other
fixed edge contrasts. The error bars indicate that this data
point was very unreliable: despite the large deviation, the
predicted value still fell within the confidence limits.

8. General discussion

In this paper, we have shown that blurred edges look
faint (i.e. low in contrast), and faint edges look sharp.
The effect of contrast on perceived blur increased with
increasing edge scale; the effect of edge scale on perceived
contrast increased with decreasing edge contrast. Neither
of these effects are predicted by Georgeson et al.’s (in press)
Nþ3 0 model of edge coding, which has successfully predicted
the results of many previous blur-matching experiments.
We have shown that the model can account for these data
if it is modified slightly by replacing the half-wave rectifier
in each channel with a transducer that has the shape of a
smoothed threshold function. Two different 2-parameter
transducers were used, one that is a smoothed soft thresh-
old function, and one that is a smoothed hard threshold
function. The differences in the fits of these models to the
data were small. For each subject, a single pair of parame-
ters was sufficient to explain all of that subject’s blur-
matching and contrast-matching data presented in this
paper and the accompanying paper (May & Georgeson,
2007), as well as the data from a blur-matching experiment
reported by Georgeson (1994).

Threshold models have had a long history in machine
vision, psychophysics and physiology. Many edge detection
algorithms for machine vision use gradient thresholds to
remove noise (Rakesh, Chaudhuri, & Murthy, 2004; Rosin,
1997). A threshold on the gradient is also a critical element
of many computational models of lightness perception
(Hurlbert, 1986). Psychophysical studies have suggested
that the visual system applies a threshold when estimating
stimulus contrast: perceived contrast is approximately a
function of the physical stimulus contrast minus the detec-
tion threshold (Cannon, 1979; Georgeson, 1991; Kulikow-
ski, 1976; McIlhagga, 2004). Neurophysiologists have often
modelled simple cells in the visual cortex using threshold
models, because each neuron has a threshold contrast level
below which it does not fire (Albrecht & Hamilton, 1982;
Dean, 1981; Ikeda & Wright, 1974; Tolhurst, Movshon,
& Thompson, 1981). It has been suggested that the under-
lying membrane potential of a simple cell shows linear spa-
tial summation, and that the overt response is an essentially
linear function of membrane potential, except for half-
wave rectification (Jagadeesh, Wheat, & Ferster, 1993;
Movshon, Thompson, & Tolhurst, 1978; Schumer &
Movshon, 1984). Many apparent non-linearities can be
accounted for simply by assuming that the rectifier has a
threshold (Andrews & Pollen, 1979; DeAngelis, Ohzawa,
& Freeman, 1993; De Valois, Thorell, & Albrecht, 1985;
Field & Tolhurst, 1986; Jagadeesh et al., 1993; Movshon
et al., 1978; Robson, Tolhurst, Freeman, & Ohzawa,
1988; Schumer & Movshon, 1984; Tadmor & Tolhurst,
1989; Tolhurst & Dean, 1987; Tolhurst & Heeger, 1997).

A problem with the threshold-linear model of simple
cells is that it incorrectly predicts that the measured tuning
bandwidth of a cell should increase with increasing con-
trast, as the tails of the tuning curve rise above the thresh-
old: in fact, the orientation and spatial frequency tuning
curves of simple cells have been found to be largely con-
trast-invariant (Sclar & Freeman, 1982; Skottun, Bradley,
Sclar, Ohzawa, & Freeman, 1987). This led Heeger
(1992a, 1992b) to model a simple cell as a linear filter, fol-
lowed by a power function transducer, since this arrange-
ment predicts contrast invariance. More recently, Miller
and Troyer (2002) proved that a power function is the only

transducer that will predict contrast invariance. However,
Carandini and Ferster (2000) measured instantaneous
spike rate as a function of instantaneous membrane poten-
tial, and found that the threshold-linear model was well
supported. This apparent inconsistency can be resolved
by proposing that, although the instantaneous spike rate
is a threshold-linear function of instantaneous membrane
potential, the spike rate of threshold-linear units averaged
over time can approximate a power function if noise is
added to the membrane potential (Anderson, Lampl,
Gillespie, & Ferster, 2000). Laming (1986) and Miller and
Troyer (2002) showed that adding Gaussian noise to a
half-wave rectifier or threshold-linear function resulted in
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a transducer with a similar shape to our Transducer A. In
fact, Suarez and Koch (1989) showed that, if the noise has
a flat distribution between 0 and T, then the transducer is
identical to Transducer A, with p = 2. Suarez and Koch’s
scheme can be extended to give Transducer A with any
exponent, p, by making the probability distribution of the
noise a power function with exponent (p � 2) between 0
and T; alternatively, Transducer A could be constructed
by summing across threshold-linear units with a distribu-
tion of thresholds that had this form.

Another problem with the threshold-linear model of
simple cells is that the model does not show the saturation
shown by real cells. Albrecht and Hamilton (1982) found
that the contrast-response function of simple cells was well
described by the Naka–Rushton function (Naka & Rush-
ton, 1966). More complex normalization models of simple
cells have been proposed, with a similar general form to the
Naka–Rushton function (Albrecht & Geisler, 1991; Hee-
ger, 1992a, 1992b). As well as showing saturation, Heeger’s
model also explains all the non-linearities previously
explained using thresholds (Heeger, 1992a, 1992b; Tolhurst
& Heeger, 1997). The Naka–Rushton function is the same
as our Transducer B, except that each term has the same
exponent, causing the function to saturate. Transducers
with a similar form to Transducer B have also been used
to explain the results of psychophysical experiments on
contrast increment detection (Foley, 1994; Legge & Foley,
1980).

Given that a power function has approximately the
same shape as a smoothed threshold-linear function
(Carandini, Heeger, & Movshon, 1997), it might be sup-
posed that a good fit to our data could be achieved with
a simple power law transducer. In fact, a pure power law
gives rise to contrast-invariant blur estimates. The proof
of this result is essentially the same as the proof that a cell
with a power law transducer will give contrast-invariant
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tuning curves (Heeger, 1992b; Miller & Troyer, 2002): a
change in contrast affects the amplitude of the transducer’s
output, but has no effect on the shape of the response pro-
file across any domain (e.g. orientation, spatial frequency,
or, in this case, scale and spatial position). Since the stages
of processing that follow the transducer in our model are
linear, the profile of the output of the model will also be
unchanged by a change in contrast, except for a scaling
in amplitude, so the positions of the peaks in edge strength
will be unchanged, leading to contrast-invariant blur
estimates.

This argument does not apply to the estimation of con-
trast, which is determined by the height of the peak in edge
strength. A pure power law transducer has a similar effect
on contrast estimation to a threshold function: perceived
contrast reduces with increasing scale, although, unlike
with the threshold function, the size of this effect is con-
trast-invariant.

The difference in the effects of a power law on blur and
contrast estimation allows us to explain how the model
accommodates one particular individual difference
between the subjects. In Experiment 1, the effect of con-
trast on perceived blur was considerably smaller for
PAA than for the other two subjects, whereas, in Experi-
ment 2, all subjects showed a similar size of effect of blur
on perceived contrast. The model accounted for this by fit-
ting a larger T parameter to PAA’s data. Thus, PAA’s
transducer had the shape of a power function over a larger
range of inputs, and this reduced the effect of contrast on
perceived blur, while maintaining a strong effect of blur on
perceived contrast. In fact, with Transducer A, when the
stimulus gradient falls below T, the transducer is effec-
tively identical to a power law. At this point, the estimated
blur will be completely unaffected by a reduction in con-
trast, and this explains why some of the graphs fitted to
PAA’s data in Fig. 3 are completely horizontal at low
contrasts.

One might ask why the original Nþ3 0 model had been so
successful at predicting Georgeson et al.’s (in press) data,
and whether the new transducers would prevent it from
predicting these data so well. There are two reasons why
it is likely that the experiments reported by Georgeson
et al. were not very sensitive to the effects of the transduc-
ers. Firstly, contrast in those experiments was at a moder-
ately high level (around 0.3), where the transducers have
less impact. Secondly, most of Georgeson et al.’s experi-
ments involved matching the blur of edges of similar con-
trast; thus, when the fixed and adjustable edges matched in
blur, their gradients would have been quite similar, so the
threshold-like transducer that followed the 1st derivative
operation would have affected both edges in similar ways,
cancelling out the effect. In the experiments reported here,
blur matches were performed between edges of very differ-
ent contrast, and contrast matches were performed
between edges of very different scale. Thus, at the point
of subjective equality, the fixed and adjustable edges would
have had very different gradients, and the transducer
would have affected the low-gradient edge much more than
the high-gradient edge. Therefore, the experiments
reported here were more sensitive to the effects of the
transducer.

Our model follows the same strategy as Lindeberg’s
(1998a) algorithm: both detect edges using a filter whose
scale is automatically matched to the scale of the edge.
We make no claims about the computational optimality
of this class of algorithm with respect to efficiency or reli-
ability in noise. Indeed, there are many successful edge
detection algorithms that select the filter scale in very differ-
ent ways from our model. One approach, for example, is to
choose, at each point in the image, the smallest filter that is
responding at a statistically reliable level (Elder & Zucker,
1998; Fleck, 1992). Elder and Zucker’s algorithm produces
impressive results on digital images, coping well with both
fine detail and blurred edges due to shadows and shading.
For human perception, however, the strength of psycho-
physical evidence (Georgeson et al., in press; May &
Georgeson, 2007) leads us to favour the Nþ3 algorithm as
a model of edge coding.

Finally, we should consider alternative explanations of
the effects reported in Experiments 1 and 2. It might be
possible to explain the results by assuming that the visual
system is performing a statistical inference about the
world (James Elder, personal communication). Take the
finding that low-contrast edges look sharp (Experiment
1). At low contrasts the signal-to-noise ratio is reduced,
and the response, R, of the visual system becomes a less
reliable indicator of edge scale, r, so P ðr j RÞ � P ðrÞ. If
the distribution of the prior, P(r), were skewed towards
sharp edges (an unknown, but possible scenario, since
many edges, such as those due to occlusion, are sharp),
then the inferred scale would be small (i.e. sharp) at
low contrasts, even for blurred edges. Now consider the
finding that blurred edges look lower in contrast (Exper-
iment 2). Many illusions of perceived brightness and con-
trast can be explained by proposing that the perceived
brightness is affected by the inferred reflectance of the
surface (e.g., Adelson, 1993). A blurred edge is likely to
be interpreted as a shadow or shading, rather than a dif-
ference in reflectance between the two sides of the edge
stimulus, and this reduced difference in inferred reflec-
tance could reduce the perceived brightness difference
between the two sides, making the edge appear lower in
contrast.

The explanations of our results based on statistical infer-
ence are not necessarily in conflict with the model that we
have presented. Instead, our model could be seen as an
implementation of the statistical inference process. It might
be fruitful to attempt to combine the two approaches in
future research. This combined approach might ultimately
prove to be the most satisfying, as it could provide a phys-
iologically plausible, quantitative account of the data, with
few free parameters, while also giving an insight into the
ecological influences that have caused the visual system
to develop in this way.
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Appendix A

van Warmerdam and Algazi (1989) and Lindeberg
(1998a) both presented identical algorithms that estimated
the scale of an edge by locating the peak across scale in the
output of a normalized Gaussian 1st derivative operation.
Both algorithms allowed flexibility in the exponent of the
normalization factor, but Lindeberg showed that it should
be r1/2 for the peak to occur in operators with a scale
matching the edge scale. This appendix proves that, if this
algorithm is considered to be the matching of a Gaussian
template to the 1st derivative signature of the edge, the nor-
malization factor should indeed be r1/2. Let f refer to the
filter kernel centred on a particular pixel, and let s refer
to the region of the signature covered by the filter kernel.
f and s can both be considered to be N-dimensional vectors,
where N is the number of pixels in the filter kernel. The
result, R, of the filtering process, at the pixel on which
the kernel is centred, is given by

R ¼
XN

i¼1

fisi:

R is called the dot product of f and s, written f Æ s (alterna-
tive terms are scalar product or inner product). A standard
result is

f � s ¼ jf jjsj cos h;

where h is the angle between vectors f and s. jfj and jsj are
the magnitudes of the vectors, which, according to Pytha-
goras’s theorem, are given by

jf j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

f 2
i

vuut ;

jsj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

s2
i

vuut :

Thus, we can deduce that

cos h ¼
PN

i¼1fisiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1f 2

i

� � PN
i¼1s2

i

� �q : ð4Þ

The term cosh in (4) is called the normalized correlation

coefficient. It is a measure of the similarity between the vec-
tors f and s. The numerator in (4) is the result of filtering
the signature with the Gaussian derivative kernel. The nor-
malization factor is derived from the denominator as fol-
lows. We can ignore the sum of squares of s, since this is
constant across scale, and will not affect where the peak
occurs. The task is simply to find the integral of the
squared filter kernel. Thus, for a 1D kernel, the normaliza-
tion factor, m, is given by

m ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR1
�1 f 2ðxÞdx

q
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR1

�1
1

r
ffiffiffiffi
2p
p exp �x2

2r2

� �h i2

dx

r
¼ð8pÞ1=4r1=2:

The constant, (8p)1/4 can be ignored, since it does not
change the shape of the response profile across space or
scale, so the normalization factor is r1/2. Derivation of
the normalization factor using a 2D operator is somewhat
more complicated, because what is required is a correlation
of the signature with the 1D cross-section of the filter ker-
nel, not with the filter kernel itself. However, the normali-
zation factor is the same as in the 1D case.
Appendix B

This appendix proves that, if Georgeson et al.’s (in
press) Nþ3 algorithm is considered to be the matching of a
Gaussian derivative template to the 2nd derivative signa-
ture of the edge, the normalization factor should be r3/2.
If f is the 1D Gaussian 1st derivative kernel, then the nor-
malization factor, m can be derived as follows:

m ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR1
�1 f 2ðxÞdx

q
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR1

�1
�x

r3
ffiffiffiffi
2p
p exp �x2

2r2

� �h i2

dx

r
¼2p1=4r3=2:

The constant, 2p1/4, can be ignored, leaving a normaliza-
tion factor of r3/2. As with the normalization factor derived
in Appendix A, the derivation is more complex in the 2D
case, but the result is the same.
Appendix C

With the binary search method, it is possible to estimate
the matching physical contrast, C, to any specified degree
of accuracy. After the first reversal in the binary search,
there is a known interval (a,b) within which C must lie.
The size of this interval halves after each step. After each
comparison, the current value of the adjustable contrast
will be at one end of the interval (either a or b). The size
of the next step is Dx = jb � aj/2, which will take the
adjustable contrast to a new value x = (a + b)/2. Thus,

a ¼x� Dx

b ¼xþ Dx:
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Since C lies within this interval, we have

x� Dx < C < xþ Dx; ð5Þ
and so,

jx� Cj < Dx: ð6Þ
If x is the estimate of C at each step, then Dx is the largest
possible error in estimation of C. If the search ends when
Dx 6 Dxmin, then we can be sure that the error in estima-
tion of C is no higher than Dxmin. Rather than setting an
upper limit on the absolute size of the error, it is preferable
to set an upper limit on the error as a proportion, p, of C.
Thus we require

jx� Cj < pC:

This can be guaranteed if the search is terminated when the
following is true:

Dx 6 pðx� DxÞ: ð7Þ
This is proved as follows. From (5) and (7), it follows that

Dx < pC; ð8Þ
and from (6) and (8), we get jx � Cj < pC, as required. The
simulations of Experiments 2 and 3 used p = 0.01, and ter-
minated when condition (7) was true. Thus, the estimated
contrast of the contrast-matched adjustable stimulus was
always within 1% of the correct value.

Appendix D. Supplementary data

Supplementary data associated with this article can be
found, in the online version, at doi:10.1016/
j.visres.2007.02.012.
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